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Integrated diffractive optical neural networks (DONNs) have significant potential for complex machine learning tasks with
high speed and ultralow energy consumption. However, the on-chip implementation of a high-performance optical neural
network is limited by input dimensions. In contrast to existing photonic neural networks, a space-time interleaving tech-
nology based on arrayed waveguides is designed to realize an on-chip DONN with high-speed, high-dimensional, and
all-optical input signal modulation. To demonstrate the performance of the on-chip DONN with high-speed space-time inter-
leaving modulation, an on-chip DONN with a designed footprint of 0.0945mm2 is proposed to resolve the vowel recognition
task, reaching a computation speed of about 1.4 × 1013 operations per second and yielding an accuracy of 98.3% in numerical
calculation. In addition, the function of the specially designed arrayed waveguides for realizing parallel signal inputs
using space-time conversion has been verified experimentally. This method can realize the on-chip DONN with higher input
dimension and lower energy consumption.
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1. Introduction

Artificial neural networks (ANNs) have received significant
attention in many fields, including computer vision[1], natural
language processing[2], decision-making[3,4], etc. Faced with
complex tasks, the requirements of ANNs for computing power
are more stringent, causing a heavy computation burden in
existing electronic computing hardware[5–13] [e.g., the central
processing unit (CPU), the graphical processing unit (GPU),
the field-programmable gate array (FPGA), and the applica-
tion-specific integrated circuit (ASIC)]. Therefore, an alternative
novel computing architecture is imperative for performing
heavy computation. Presently, optical neural networks (ONNs)
have garnered tremendous interest[14–34] because of the advan-
tages of their low power consumption, low latency, and ultra-
high bandwidth, which may solve the dilemma that the
existing electronic computing architectures face.
The ONNs based on diffractive surfaces in free space can opti-

cally perform inference tasks[15,35,36], this kind of ONNs is not
limited by high input dimensions. However, the ONNs based on
spatial diffraction are often composed of discrete devices, such as
3D-printed metasurfaces, digital micromirror devices (DMDs),
and spatial light modulators (SLMs), which are bulky and low in
integration. Moreover, the unavoidable calibration process

between the discrete devices may bring potential errors to the
system. Consequently, these problems may limit the application
scenarios of such kinds of ONNs to some extent. The ONNs
based on the silicon-on-insulator (SOI) platform not only have
the advantages of low power consumption, low latency,
and ultrahigh computing bandwidth but also have the character-
istics of small volume, light weight, good stability/portability,
and unnecessary physical alignment process. There are several
different implementations of the integrated ONNs, including
a coherent approach based on Mach–Zehnder interferometer
(MZI) mesh[14,20,21,27], wavelength-division multiplexing
(WDM) processing with micro-ring resonators (MRRs), pro-
grammable routing enabled by a phase-change material
(PCM)[16], and an on-chip diffractive approach based on sub-
wavelength structures[17,18,29]. Among them, the ONNs
designed based onMZIs,WDM-MRRs, and PCMhave low inte-
gration, which makes achieving large-scale expansion difficult.
The on-chip DONNs based on sub-wavelength structures can
achieve high integration and large computational capacity.
However, its massively parallel inputs are limited by the energy
consumption and high speed. Therefore, it is significantly urgent
to solve the limited input dimensions of the on-chip DONNs.

Vol. 21, No. 9 | September 2023

© 2023 Chinese Optics Letters 091301-1 Chinese Optics Letters 21(9), 091301 (2023)

mailto:chenhw@tsinghua.edu.cn
https://doi.org/10.3788/COL202321.091301


The calculation function of the DONNs is based on the
mutual interference between the parallel input signals.
Therefore, it must be ensured that the modulated signals enter
the input section of the DONNs at the same time. Routinely, the
parallel input signals can be realized by integrated phase shifters
(i.e., the integrated heaters) on each waveguide[14,30,31,37].
However, it is inevitably necessary to continuously provide addi-
tional energy to maintain the normal operation of these shifters
by this way. Thus, the on-chip power consumption would
increase dramatically with the increase of the input dimensions.
In this work, the parallel input multiple signals are realized by
designing the true-delay lines of the arrayed waveguides. The
interval length between the adjacent waveguides is determined
by the time interval between the serial signals. The shorter the
time interval, the smaller the length difference between two adja-
cent arrayed waveguides. Here, an on-chip DONN for the task of
vowel recognition was theoretically verified, and the arrayed
waveguides with different lengths were fabricated using electron
beam lithography (EBL) technology based on an SOI platform.
According to the modulation rate (10 Gbps), the interval differ-
ence between adjacent waveguides was set to 7.1429 mm corre-
sponding to a 100 ps time delay. We fabricated the arrayed
waveguides with a fixed length difference and experimentally
demonstrated its performance. Based on the results of the
fabricated arrayed waveguides, an on-chip DONNwith two hid-
den layers (each with 70 neurons) is proposed, and the numeri-
cal calculation result of the blind test prediction of the vowel
recognition dataset[38] is 98.3%. The aforementioned method
for designing the on-chip DONN based on the standard
complementary metal-oxide semiconductor (CMOS) process
provides a solution for high dimensional inputs, low power con-
sumption, and large capacity computing, which paves a way for
promoting the applications of the on-chip DONN in various
aspects.

2. Concept and Principle

2.1. Arrayed waveguides

The design of the arrayed waveguides is key to realizing the high
dimensional parallel loading of signals using the space-time
interleaving method. In Fig. 1, the length of ΔL is determined

by the modulation rate of the input signal, which can be calcu-
lated by

ΔL =
c

Bm · ng
, �1�

where ΔL is the length interval between the adjacent arrayed
waveguides, Bm is the modulation rate of the input signal, ng
is the group refractive index of the waveguide, and c is the speed
at which light travels in the vacuum.

2.2. On-chip electromagnetic propagation model

In this work, an on-chip electromagnetic propagation model
(OCEPM) is proposed by modifying the Huygens–Fresnel prin-
ciple under restricted propagation conditions, which is shown as
follows:
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where i represents the ith layer of the network, n represents the
nth neuron located at �xn, yn� of layer i, and m represents the
mth neuron located at �xm, ym� of layer i − 1. λ is the working
wavelength, and j =

������
−1

p
is an imaginary unit. cos θn,m=
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p
is the dis-

tance between themth neuron in layer i − 1 and the nth neuron
in layer i, and nS is the effective refractive index (ERI) of the slab
waveguide.Ap is a specific coefficient of the amplitude andΔϕ is
a fixed phase delay[18]. To verify the effectiveness of the OCEPM,
the same input signal, with an amplitude distribution as shown
in Fig. 2(a) and a phase distribution as shown in Fig. 2(b), is fed
into the OCEPM and the 2.5D variational finite-difference time-
domain (2.5D FDTD) solver for calculation. The calculation
results are shown in Figs. 2(c) and 2(d). The calculated ampli-
tude and phase distributions are consistent with each other.

3. Methods

3.1. Device fabrication

The arrayed waveguides were fabricated on an SOI (100 sub-
strate) platform with a 220-nm-thick silicon (Si) top layer and
a 3-μm-thick buried oxide layer. The fiber-grating coupler loss
was optimized to 5 dB per input/output facet.

3.2. Optical measurements

A continuous-wave tunable semiconductor laser with a polari-
zation controller was used to launch light onto the chip
(32 mW). The output was monitored using two dual-channel
optical power meters, and the minimum power detection limit
was −75 dB. An external auxiliary circuit was provided by a
direct current (DC) dual-tracking voltage-stabilizing source
(DH1718E-5, 0–35 V).

Fig. 1. Schematic diagram of converting a serial input signal into a parallel
signal at a certain time using the space-time conversion method and feeding
it into the on-chip DONN.

Vol. 21, No. 9 | September 2023 Chinese Optics Letters

091301-2



3.3. Numerical simulations

The training process of the vowel recognition classification was
conducted in Pytorch, which is a package for Python. The light
diffraction connection in the process of forward and error back-
ward propagation followed the modified Huygens–Fresnel prin-
ciple. The data in the vowel recognition dataset were encoded
onto the amplitude of light.

4. Numerical Calculation and Experiment

4.1. Structure design

Combining forward propagation, error backpropagation, and
gradient descent algorithms, the structural parameters of an
on-chip DONN can be obtained by pre-training through a com-
puter in advance based on the OCEPM[18,39]. An on-chip
DONN with two hidden layers is proposed, and the weight
parameters on two hidden layers (HLs) are trained on the prem-
ise of fixing the super parameters of the DONN. The weight
parameters on each HL obtained in the pre-training process,
which are displayed in the form of pixels, as shown in Fig. 3(a),
can be equivalently mapped onto the light in the form of the
phase difference. The phase difference is realized by the optical
path interval generated by the light passing through the slot
group (composed of identical silicon slots filled with silicon
dioxide) with different lengths. The length of the identical silicon
slots in the slot group filled with silicon dioxide is calculated by

Li =
Δφi

�nE − nS� · k0
, �3�

where Li is the length of the identical silicon slots filled with sil-
icon dioxide in the ith group, nE is the effective refractive index
(ERI) of the slot group filled with silicon dioxide through which
light passes, nS is the ERI of the slab waveguide, k0 = 2π=λ is the
wavenumber of light that travels in the vacuum, and Δφi is
the phase difference generated by the ith slot group filled with
silicon dioxide[18,40]. Here, the phase difference Δφi is pre-
trained on the computer according to specific machine learning
tasks.
In Fig. 3(b), the length of the HLs was 105 μm along the

Y-axis. Each HL contained 70 neurons, and each value of the
neurons is mapped by a slot group (consisting of three identical
silicon slots filled with silicon dioxide). The center distance
between the adjacent silicon slot filled with silicon dioxide
(SSSD) is 500 nm, the period of the slot group is 1.5 μm, the
width of the SSSD is 200 nm, and the thickness of the SSSD
is 220 nm. The distance between two successive HLs was
300 μm along the X-axis. In addition, the input features are
loaded onto the corresponding input single-mode waveguides
and propagate directly into the slab waveguide, and then propa-
gate 300 μm through the slab waveguide to reach the first HL.
After light exits the last HL, it also propagates 300 μm until it
reaches the output layer of the network, with four detector
regions “yi” (i = 1, 2, 3, 4) arranged in the output section. Each
output detector region is assigned a specific category. The width
of each detector region was 8 μm, and the distance between the
centers of the two neighboring detector regions was 8 μm.
Therefore, for the designed on-chip DONN, the footprint of the

Fig. 2. (a) and (b) are the field intensity and phase distribution of the input
signal, respectively. (c) and (d) are the field intensity and phase distribution of
the input signal propagating 300 μm later in a slab waveguide (thickness is
220 nm, width is 105 μm) of the modified OCEPM (black line) and the 2.5D FDTD
(red line), respectively.

Fig. 3. (a) Weights of neurons on the two hidden layers of the on-chip DONN
designed for the vowel recognition task. (b) The schematic of the on-chip
DONN. Each diffractive unit on a given layer acts as a secondary source of
a wave. Each diffractive unit is a slot group composed of three identical silicon
slots filled with silicon dioxide and represents a single neuron in the DONN
system. (c) Logic diagram of (b), which mathematically describes the physical
calculation process of the on-chip DONN. W(k) represents the kth diffraction
matrix derived from the on-chip electromagnetic propagation model [Eq. (2)].
(x1, x2, x3, x4) is the input and (y1, y2, y3, y4) is the output.
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on-chip DONN can be calculated as 0.105 × 3 × 0.3=
0.0945mm2. The physical calculation process can be math-
ematically described in Fig. 3(c), and its specific formula expres-
sion is shown in Eq. (4), where “T” represents the matrix
transpose. Our previous research[18,39] outlined the specific
and detailed design method of the on-chip DONN structure.
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4.2. Numerical calculation

In this work, an on-chip DONN for the task of vowel recognition
is proposed. Meanwhile, the vowel recognition data is obtained
from the pronunciation of 10 types of letters by 90 different peo-
ple, here, 4 types of phonemes are selected as the classification
prediction categories, namely “hid”, “hEd”, “hYd”, and “hOd”.
Therefore, there is a total of 360 sets of data, which is divided
into a training set and a testing set by 1:1, that is, the training
set and testing set have 180 sets of data, respectively. In addition,
the features of the vowel recognition dataset are compressed into
four features through a fully connected layer network. Then,
these features are mapped onto the amplitude of light. Based
on the OCEPM, the on-chip DONN with two HLs was opti-
mized and used for classification on the vowel recognition data-
set. Figure 4(a) shows the loss values for the training set and the
accuracy values for the blind testing set during the learning pro-
cedure. The confusion matrix for the blind testing set in the
numerical calculation is depicted in Fig. 4(b), and the
prediction accuracy is 98.3%. The recognition results of the pho-
nemes “hid”, “hEd”, “hYd”, and “hOd” are shown in Figs. 4(c),
4(d), 4(e), and 4(f), respectively.

4.3. Experimental verification of space-time conversion
performance

To verify the performance of the space-time conversion of the
arrayed waveguides, four single-mode waveguides with fixed
delay lines were fabricated using EBL technology based on an
SOI platform, which is shown in Fig. 5. The incremental length

of the fixed delay line is calculated based on Eq. (1), which is
7.1429 mm, corresponding to a 100 ps time delay.
In this experiment, four chronological Gaussian pulses with

different amplitudes generated by an arbitrary waveform gener-
ator (AWG) are loaded on the continuous-wave laser through
the amplitude modulator (AM). The time slot of the input signal
pulse is 100 ps, corresponding to the calculated time delay. Then,
the input signals are coupled into the on-chip arrayed wave-
guides from the four vertically coupled gratings by a 1 × 4 fiber
star-coupler outside the chip. Ultimately, the serial signals in

Fig. 4. (a) Loss curve on the training set (black line) and accuracy curve on the
blind testing set (red line) for the optimized on-chip DONN during the learning
procedure. (b) The confusion matrix by numerical calculation for the blind
testing sets. (c)–(f) The display of the on-chip DONN classification results
of the different types of vowel phonemes “hid”, “hEd”, “hYd”, and “hOd”,
respectively.

Fig. 5. (a) Microscopic view of the fabricated arrayed waveguides.
(b) Vertically coupled grating. (c) Local close-up of the vertically coupled gra-
ting. (d) Ring delay line. (e) Local close-up of the ring delay line.

Vol. 21, No. 9 | September 2023 Chinese Optics Letters

091301-4



chronological order appear simultaneously at a certain moment
on the output interface through the fixed true-delay lines owned
by the on-chip arrayed waveguides. Figure 6(a) is a serial input
signal, and Fig. 6(b) shows the output result of the serial input
signal appearing at 626.15 ps simultaneously after passing
through the arrayed waveguides, which proves that the designed
arrayed waveguides with true-delay lines can achieve better
space-time conversion function. Meanwhile, in Fig. 5, before
compensating for losses, the losses of the arrayed waveguides
from bottom to top were 15.38, 17.93, 22.03, and 25.2 dB,
respectively.

4.4. System experimental implementation

In this work, we designed a system experimental setup (Fig. 7)
based on the experimental verification results of arrayed wave-
guides and theoretically implemented the numerical calculation
of the on-chip DONN. When the serial input signals pass
through the designed arrayed waveguides with a fixed true-delay
line, they will appear simultaneously in the input interface of the
on-chip DONN in parallel at a certain moment. Based on the

input of the parallel signals at that time, the on-chip DONN will
perform inference calculations according to the characteristics
of the input signals and give calculation results at a specific time
on the output interface of the on-chip DONN. The intensity of
different light field distributions on the output interface of the
on-chip DONN is coupled into the single-mode waveguide
through an inverse taper and then collected by a high-speed
photodetector from the vertical coupling grating. Finally, the
eventual classification results are given in the form of light inten-
sity. As for the research on on-chip DONNs, related theoretical
simulations[17,18,33] and experimental verifications[29,39] have
been conducted.

5. Discussion

5.1. Computation speed and energy efficiency

The proposed on-chip DONN architecture has the potential to
process high-dimensional big data at high speeds and low power
consumption. Once all the parameters have been trained and
mapped onto the physical structures, the whole computing pro-
cedure is performed optically in a passive manner. Assuming
that the loading signal modulation rate is f Gbps, the input sig-
nal isM × 1 vector in parallel after the arrayed waveguides with a
fixed delay on the DONN input interface. The on-chip DONN
has N neurons at each HL, implementingm layers of the N × N
matrix multiplication and operating at a Dbw GHz photodetec-
tion rate. The number of floating-point operations per second
(FLOPS) to match the optical network is obtained using the fol-
lowing equation[14]:

R = 2m × N2 ×min

�
f

2M − 1
,Dbw

�
FLOPS, (5)

Fig. 6. (a) Serial input signals. (b) The output result of the serial input signals
after passing through the arrayed waveguides.

Fig. 7. (a) System experimental setup. Four chronological Gaussian pulses (S1, S2, S3, and S4) with different amplitudes generated by an arbitrary waveform
generator (AWG) are loaded on the continuous-wave laser through the amplitude modulator (AM). The time slot of the input signal pulse is 100 ps corresponding to
the calculated time delay. Then, the input signals with various amplitudes are coupled into the on-chip arrayed waveguides from the four vertically coupled
gratings by a 1 × 4 fiber star-coupler (SC) outside the chip. Next, the serial signals in chronological order will exist in parallel at a certain moment on the output
interface through the fixed true-delay lines owned by the on-chip arrayed waveguides. Ultimately, after the required parallel signals enter the on-chip DONN to
complete the inference calculation, its output optical field will be coupled into the single-mode waveguides through the corresponding inverse tapers at the DONN
output interface and received by the on/off-chip photodetector (PD). At this time, a classification task is completed. PC, polarization controller; Amp, electric
amplifier; VOA, variable optical attenuator (which is to compensate the fabricating error of the on-chip delay lines); VODL, variable optical delay line; OSC, digital
oscilloscope.
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where R is the number of operations per second, which is related
to the modulation rate f , the scale of the arrayed waveguidesM,
the number of HLsm, the number of neurons on eachHLN , and
the detection frequency of the photodetectorsDbw. Therefore, in
this work, the computation speed is approximately 1.4 × 1013

FLOPS calculated using Eq. (5), which is one order of magnitude
higher than the performance of modern GPUs, which typically
perform at 1012 FLOPS[21]. The on-chip part of the whole sys-
tem, including the arrayed waveguides and the DONN, is fully
passive during the system operation, and no additional energy
supply is required except for the laser (32 mW). Therefore,
excluding the energy consumed by peripheral electronic devices
and drive circuits, the energy consumed by the chip in the opti-
cal computing process is about 2.286 × 10−17 J/FLOP.

5.2. Performance of proposed DONN framework

Recently, certain research on integrated ONNs has been con-
ducted. Table 1 compares the proposed on-chip DONN with
other integrated DONNs and ONNs. It is not difficult to find
that the computing unit of on-chip DONNs is a sub-wavelength
structure. Thus, its integration degree is higher than that of other
on-chip ONNs. In addition, the signal loading method of the
arrayed waveguides is all passive. Thus, the energy consumption
only spends on the single modulator, and the energy consump-
tion during the signal loading part would not increase with the
increase of input dimensions. However, the other signal loading
methods are very limited by energy consumption when dealing
with high dimensional tasks because the energy consumption
would increase sharply with the increase of the number of phase
shifters used for signal loading.

6. Conclusion

A wholly passive optical on-chip DONN based on an SOI plat-
form was proposed. The signal loading method of the proposed
on-chip DONN is achieved using the arrayed waveguides, which
can convert the serial input signals in chronological order into
parallel signals at a certain time and feed them into the on-chip

DONN. The advantage of this approach is that it overcomes the
problem of the existing integrated ONNs, which are limited in
the input of high-dimensional signals. In addition, the conver-
sion of serial signals to parallel signals using space-time inter-
leaving would not consume more energy because the whole
conversion process is passive. The proposed method would
make the on-chip DONNs more widely applicable and may,
to a certain extent, promote the further development of sili-
con-based photon computing.
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